DNA technology for big data storage and error detection solutions: Hamming code vs Cyclic Redundancy Check (CRC)

Author:

Sais Manar,Rafalia Najat,Abouchabaka Jaafar

Abstract

There is an increasing need for high-capacity, highdensity storage media that can retain data for a long time, due to the exponential development in the capacity of information generated. The durability and high information density of synthetic deoxyribonucleic acid (DNA) make it an attractive and promising medium for data storage. DNA data storage technology is expected to revolutionize data storage in the coming years, replacing various Big Data storage technologies. As a medium that addresses the need for high-latency, immutable information storage, DNA has several potential advantages. One of the key advantages of DNA storage is its extraordinary density. Theoretically, a gram of DNA can encode 455 exabytes, or 2 bits per nucleotide. Unlike other digital storage media, synthetic DNA enables large quantities of data to be stored in a biological medium. This reduces the need for traditional storage media such as hard disks, which consume energy and require materials such as plastic or metals, and also often leads to the generation of electronic waste when they become obsolete or damaged. Additionally, although DNA degrades over thousands of years under non-ideal conditions, it is generally readable. Furthermore, as DNA possesses natural reading and writing enzymes as part of its biological functions, it is expected to remain the standard for data retrieval in the foreseeable future. However, the high error rate poses a significant challenge for DNA-based information coding strategies. Currently, it is impossible to execute DNA strand synthesis, amplification, or sequencing errors-free. In order to utilize synthetic DNA as a storage medium for digital data, specialized systems and solutions for direct error detection and correction must be implemented. The goal of this paper is to introduce DNA storage technology, outline the benefits and added value of this approach, and present an experiment comparing the effectiveness of two error detection and correction codes (Hamming and CRC) used in the DNA data storage strategy.

Publisher

EDP Sciences

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3