Comparative Analysis of Transfer Learning-Based CNN Approaches for Recognition of Traffic Signs in Autonomous Vehicles

Author:

Fatima Ezzahra Khalloufi,Najat Rafalia,Jaafar Abouchabaka

Abstract

Traffic signs recognition has a crucial role in enhancing the safety and efficienty of autonomous vehicles (AVs). This AVs can contribute to a cleaner and healthier environment by improving fuel efficiency, minimizing travel distances, and deacreasing air pollution. Many artificial intelligence (AI) approaches contribute to develop AVs. Therfore, Convolutional Neural Networks (CNNs) have shown remarkable performance in image classification tasks for AVs, inculding traffic signs recognition. However, training deep CNNs from scratch for traffic sign recognition requires a significant amount of labeled data, which can be time-consuming and ressource-intensive to obtain. Transfer Learning, a technique that leverages pre-trained models on large-scale datasets,offers a promising solution by enabling the transfer of learned feautres from one task to another. This paper presents a comprehensive comparative analysis of three popular transfer learning based CNN approaches, namely ResNet, VGGNet, and MobileNet,for the recognition of traffic signs in the context of AVs.

Publisher

EDP Sciences

Subject

General Medicine

Reference12 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Proposed CNN Model for Myanmar Traffic Sign Recognition System;2024 IEEE Conference on Computer Applications (ICCA);2024-03-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3