Physically-based reduction function to model unsaturated flow associated with plant transpiration

Author:

Roberts-Self Eve,Tarantino Alessandro

Abstract

Vegetation plays an important ‘hydrological’ role in stabilising geostructures. Soil water is extracted by the roots due to transpiration, this increases soil suction and, hence, soil shear strength. Transpiration occurs in two different regimes, energy-limited and the water-limited regimes respectively. These two regimes are reflected in the two branches of the transpiration reduction function used to model the hydraulic boundary conditions for vegetated ground. The water-limited branch accounts for the reduced transmissivity of the soil-root system when the degree of saturation and, hence, the hydraulic conductivity declines. The water-limited branch of existing reduction functions (e.g., Feddes function) is defined in purely phenomenological fashion with parameters that have no clear link with the complex interaction between soil hydraulic properties and root architecture. A paradigm shift can be achieved through physically-based reduction functions. These require analytical closed-form solutions of radial water flow at the soil-root interface that, in turn require introducing simplifying assumptions, i.e., steady-state flow and a simplified hydraulic conductivity function. This paper explores the implications of these assumptions by i) benchmarking the water-limited branch of the reduction function derived analytically against the one derived numerically for more realistic hydraulic behaviour and ii) assessing the steady-state assumption.

Publisher

EDP Sciences

Subject

General Medicine

Reference23 articles.

1. Kalsnes B., Capobianco V., Klima 2050 Report No 16 (2019)

2. Nature-based solutions for hydro-meteorological risk reduction: a state-of-the-art review of the research area

3. Feddes R.A., Kowalik P.J., Zaradny H.. Simulation of field water use and crop yield. Pudoc, Wageningen. Simulation Monographs (1978).

4. Numerical simulation of evapotranspiration using a root water uptake model

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3