Climate-driven soil suction variation using a natural-order Fourier series approach

Author:

Olaiz Austin,Zapata Claudia

Abstract

In unsaturated soil practice, the near-ground-surface moisture flow is commonly evaluated using the 1-dimensional (1D) suction diffusion equation. This study presents the application of a Natural-Order Fourier Series (NOFS) approach for representing monthly climate-driven soil suction variations near the ground surface, which is a boundary condition that is generally difficult to adequately model. The NOFS incorporates an algorithmic selection criterion to optimize the order of the Fourier series to improve the capture of the seasonal shifts and extreme climate periods, while maintaining acceptable computation efficiency. The climate-soil suction interaction is expressed using published empirical relationships between monthly rainfall, temperature, and soil index properties. An example and validation study of the proposed NOFS selection approach is presented using measured soil properties and historical weather data at a study site in Denver, Colorado USA. Key findings from performance and stability studies of five locations in the United States associated with differing climate regions are discussed. Limitations and recommendations for implementation are also included. The proposed NOFS approach for capturing climate-driven changes in suction near the ground surface can be efficiently implemented in unsaturated soil numerical analyses that are governed by moisture-dependent mechanical soil behavior and can help improve the computation time, stability, and performance associated with stochastic simulations.

Publisher

EDP Sciences

Subject

General Medicine

Reference26 articles.

1. Mitchell P., The Structural Analysis of Footings on Expansive Soil. Kenneth W.G. Smith & Associates. Newton, South Australia (1979)

2. Lytton R., Aubeny C, Bulut R., Design procedure for pavements on expansive soils. Austin, TX: Texas Department of Transportation (TxDOT) (2005)

3. PTI, Design & construction of post-tensioned slabs-on-ground, 3rd edition. Post Tensioning Institute. Phoenix, AZ (2008)

4. Witczak M., Zapata C., Houston W., Models Incorporated into the Current Enhanced Integrated Climatic Model: NCHRP 9-23 Project Findings and Additional Changes after Version 0.7. Final Report. Project NCHRP 1-40D (2006)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3