Modeling of the torsion test of a cylindrical specimen with the help of the inverse method

Author:

Shishkin D.O.,Petrov P.A.

Abstract

This article discusses the torsion problem of a continuous cylindrical specimen used to construct a hardening curve. A brief review of the methods for processing the results of the method of torsion of a cylindrical specimen is given. The possibility of using the inverse method to determine the material model in the case of the torsion of the continuous cylindrical specimen made of steel 20H is shown. By means of QFORM 9.0 software package virtual experiment connected with torsion of a cylindrical specimen is carried out. As a result of this research, the rheological model of steel 20His determined with a high degree of accuracy. The stress-strain state of the material was analyzed during the torsion of the specimen by means of the QFORM. The results of the virtual experiment are compared with the full-scale test.Anexceptionally good match of the results was obtained. The inverse method showed its efficiency and made it possibleto determine a rheological model of the material. The model accurately describes the experimental data. The resulting material model (for steel 20H) is valid in the following range of parameters: deformation temperature of 20°C, deformation rate of 0.5 s−1, the strain range of 0 to 2.5.

Publisher

EDP Sciences

Reference11 articles.

1. Sauveur A., Steel at elevated temperatures. (Trans. Am. Soc. Steel Treating 1930).

2. Nadai A., Theory of Flow and Fracture of solids. (New York: McGraw-Hill 1950).

3. Post processing of the hot torsion test results using a multi-dimensional modelling approach

4. Massoni E., Forestier R., et al. Inverse analysis for the identification of thermal and mechanical parameters of materials. In: Pietrzyk M. editor. Fifth ESAFORM Conference on Material Forming. Krakow, 159–162 (2002).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3