Abstract
The article is devoted to the determination of second-order perturbations in rectangular coordinates and components of the body motion to be under study. The main difficulty in solving this problem was the choice of a system of differential equations of perturbed motion, the coefficients of the projections of the perturbing acceleration are entire functions with respect to the independent regularizing variable. This circumstance allows constructing a unified algorithm for determining perturbations of the second and higher order in the form of finite polynomials with respect to some regularizing variables that are selected at each stage of approximation. Special points are used to reduce the degree of approximating polynomials, as well as to choose regularizing variables. The problem of generation of an asymptotic approximation of the solution of a perturbed differential equation system is considered in the case where a bifurcation occurs in the “fast motions” equation when the parameter changes: two equilibrium positions merge, followed by a change in stability.