Oxy-steam co-gasification of sewage sludge and woody biomass for bio-methane production: an experimental and numerical approach

Author:

Gabbrielli Roberto,Frigo Stefano,Bressan Luigi

Abstract

Sewage sludge management is a current problem of extreme concern in Europe. Till now, the most frequent route for sludge management has been incineration or the reuse by shedding on agricultural land both directly or after composting. However, this last method is critically reconsidered lately owing to the increasing contamination of sewage sludge by chemicals, heavy metals, residual organic oils, etc.. In the present study, the performance of a steam-oxy gasification plant has been analyzed. The plant allows the thermo-chemical conversion of sewage sludge, together with woody biomass, into a gas mixture (syngas) composed by basic chemicals (synthetic hydrocarbons), suitable for subsequent industrial production of very high added-value products such as methane. In particular, a numerical model of methanation plant, composed by a downdraft gasifier, a syngas cleaning system and a Sabatier reactor, has been created within the commercial code Aspen-One and validated with the results obtained from a real scale air gasifier fed with sewage sludge and woody biomass. First results showed that the steam-oxy co-gasification process has a high energy conversion efficiency that reaches roughly 80% (i.e. produced syngas calorific value vs the dried feedstock calorific value) with an overall methane yield of about 20% (by mass) of the feedstock utilized.

Publisher

EDP Sciences

Reference17 articles.

1. Milieu Ltd, WRc, RPA and DG Environment (2008) Environmental, Economic and Social Impacts of the Use of Sewage Sludge on Land, Final report for the European Commission.A.

2. https://ec.europa.eu/eurostat/statistics-explained/index.php/Water_statistics#Wastewater_treatment

3. ESWI (2012) Contract No. NV.G.4/FRA/2007/ 0066.

4. Gasification of biowaste: A critical review and outlooks

5. Co-gasification and recent developments on waste-to-energy conversion: A review

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3