Short-term Predictions of PM10 Using Bayesian Regression Models

Author:

Ramli Norazrin,Abdul Hamid Hazrul,Yahaya Ahmad Shukri,Noor Norazian Mohamed,Elena Holban

Abstract

One of the air pollutants that poses the greatest threat to human health is PM10. The objectives of this study are to develop a prediction model for PM10. The Multiple Linear Regression (MLR) and Bayesian Regression (BRM) models were constructed to forecast the following day’s (Day 1) and next two days’ (Day 2) PM10 concentration. To choose the optimal model, the performance metrics (NAE, RMSE, PA, IA, and R2) are applied to each model. Jerantut, Nilai, Shah Alam, and Klang were chosen as monitoring sites. Data from the Department of Environment Malaysia (DOE) was utilised as a case study for five years, with seven parameters (PM10, temperature, relative humidity, NO2, SO2, CO, and O3) chosen. According to the findings, the key factors responsible for the unhealthy levels of air quality at the Klang station include carbon monoxide (CO), nitrogen dioxide (NO2), sulphur dioxide (SO2), and ozone (O3) from industrial and maritime activities, which are thought to influence PM10 concentrations in the area. When compared to MLR models, the results demonstrate that BRM are the best model for predicting the next day and next two days PM10 concentration at all locations.

Publisher

EDP Sciences

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3