Numerical Simulation Of Thermal Pressure Ventilation In Building Atrial: A Case Study

Author:

Wei Tong,Shen Cong,Han Chengyu,Luo Xilian,Gu Zhaolin

Abstract

Over one-third of China’s total energy usage can be attributed to buildings, of which 50% is consumed by HVAC systems. Natural ventilation is an effective approach to increase the quality of indoor air and maintain a comfortable temperature. In order to provide a higher ventilation rate, a stack ventilation system with an auxiliary heat source of solar energy was proposed in this research. Taking the main building of the School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, as an example, the ventilation efficiency of the system was evaluated by using the software of Fluent. The results show that using a stack ventilation system with an auxiliary heat source of solar energy in the lower part of the chimney increases the ventilation capacity by 738% over the unheated case and reduces the average room temperature by 1.7°C compared to the unheated. The proposed system could be orientated to improve natural ventilation for public buildings.

Publisher

EDP Sciences

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3