Author:
Garcia-Garrido Eduardo,Mendoza-Villena Montserrat,Lara-Santillan Pedro M.,Zorzano-Alba Enrique,Falces Alberto
Abstract
The integration of renewable energies, specifically solar energy, in electric distribution systems is increasingly common. For an optimal operation, it is very important to forecast the final net demand of the power distribution network, considering the variability of solar energy combined with the variability of the electric energy consumption habits of population. This paper presents the methodology followed to forecast the net demand in a power distribution substation. Two approaches are considered, the net demand direct prediction, and the indirect prediction with the forecasts of PV power generation and load demand. Artificial Neural Network (ANN) based models and autoregressive models with exogenous variables (ARX) are used to predict the net demand, directly and indirectly, for the 24 hours of the day-ahead. The methodology is applied to a medium voltage distribution substation and the direct and indirect forecasts are compared.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献