Using machine learning methods to forecast the number of power outages at substations

Author:

Minnegalieva Chulpan,Gainullina Alina

Abstract

Forecasting in the energy sector is of great importance for suppliers and for consumers. Optimum power consumption depends on many factors. Due to natural or any other external conditions, accidents are possible. In order to minimize emergency consequences, it is necessary to be prepared for possible outages in advance in order to reduce the time for their elimination and decision-making. This article considers the problem of forecasting power outages at substations. The enterprise provided a summary table of outages at substations due to natural disasters on specific days. To solve the problem, a machine learning method was chosen – binary classification. Five different algorithms were considered. The models were tested on data from the first half of 2022. The most effective algorithm for 20% of the test sample was the binary classification algorithm using generalized additive models (GAM). This algorithm is also one of the best with a sample of 50%. A model has been prepared for further use in predicting the probability of outages at the enterprise. The model can be used in other organizations; for this, it is first necessary to train the model on the data of the corresponding region.

Publisher

EDP Sciences

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3