LBM-MRT simulation of vertical flow of a non-Newtonian fluid in a channel provided with obstacles

Author:

Belaidi Mohammed Amokrane,Nasseri Lyes,Nebbali Rachid,Himrane Nabil,Ameziani Djamel Eddine

Abstract

Forced convection heat transfer in channels with a block has been studied numerically. The vertical walls are differentially heated. The Lattice Boltzmann Method with multiple relaxation time (MRT) has been used to solve numerically the momentum and the heat transfer governing equations. This study details the effects of variations in the Reynolds number, Rayleigh number, and behavior index of fluid, to illustrate important fundamental and practical results. The results show that the recirculation caused by porous-covering block will significantly enhance the heat transfer rate on both top and right faces of second and subsequent blocks. In order to better understand the different elements of the study, we first analyzed the flow in a channel without obstacles in order to understand the behavior of non-Newtonian fluids. in such situations, we have observed that the speed profiles at establishment are essentially dependent on the behavior index, while the heat transfers are proportional to the Reynolds and Prandtl numbers but inversely to the behavior index.

Publisher

EDP Sciences

Reference30 articles.

1. Storage Silos Self Ventilation: Interlinked Heat and Mass Transfer Phenomenon

2. Javanmard M., Taheri M.H., and Ebrahimi S.M., Heat Transfer of Third-grade Fluid Flow in a Pipe under an Externally Applied Magnetic Field with Convection on Wall %J Applied Rheology. 2018. 28(5).

3. Combined Forced and Free Convective Heat Transfer Characteristics in a Narrow Vertical Rectangular Channel with 2.5 mm in Gap Heated from Both Sides

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3