Experimental based determination of SCOP coefficient for ground-water heat pump

Author:

Anweiler Stanisław,Masiukiewicz Maciej

Abstract

The paper presents research related to the operation of an ground-source heat pump with a thermal output of 16.85 kW and an electrical power of 3.72 kW in various conditions, both from the mechanical and thermodynamic perspective. The publication contains the results of research on a selected heat pump model with an R410a refrigerant carried out in an accredited laboratory in the Czech Republic. Detailed analysis of the data in terms of changes in the COP coefficient for two heating water temperatures was carried out (35°C and 55°C) and in the range of outdoor air temperature from -10°C to 15°C every 1°C. The analysis was also carried out to determine the efficiency of the heat pump depending on the parameters of the heat source. Devices of this type, enabling effective use of environmental available thermal energy with low operating costs, meet increasingly stringent environmental protection requirements. Significant costs of heating buildings are one of the main reasons for the need to look for alternative energy sources. The heat resources contained in water, air and land are huge. Due to the fact that heat pump prices dropped significantly, and their efficiency has increased over the last few years, these devices are a real competition for conventional ways of supplying buildings with heat. Heat pumps do not require daily maintenance, are fully automated and have intuitive control. These features allow to use them as components in the system of a modern and intelligent household. It was shown that the SCOP of the tested device increased by 1% on average reaching SCOP = 4.71 for a typical external calculation temperature and for a low-temperature heating system (35°C).

Publisher

EDP Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3