Characteristics of temporal variability of urban ecosystem-atmosphere CO2, CH4, and N2O fluxes

Author:

Bezyk Yaroslav,Dorodnikov Maxim,Grzelka Agnieszka,Nych Alicja

Abstract

Understanding the origin and mechanisms controlling GHGs (CO2, CH4 and N2O) emission spatially and temporally is critical for evaluating future climate changes. Whether the controls on GHG dynamics in urban ecosystem are similar to those in natural ecosystems are not fully understood. In the current study, the aboveground (cover vegetation + soil) and soil (including autotrophic and heterotrophic) CO2, N2O and CH4 fluxes and respective carbon stable isotopic composition (δ13C) of respired CO2 at natural abundance level were simultaneously measured from a re-established grassland in the urban area of central Germany. The static chamber system (combination of transparent and opaque modes) was applied to assess the effects of intensive vegetation growth during two weeks of April 2017. The values of CO2 fluxes obtained with both transparent and opaque chambers differed significantly due to the combined effects of the incoming photosynthetically active radiation (PAR) and temperature on vegetation and belowground processes. The average value of measured CO2 flux with opaque chambers was 9.14 ± 1.9 (mg m-2 min-1) vs. 2.37 ± 0.9 (mg m-2 min-1) with transparent chambers for the re-established grassland. In contrast, soil CH4, as well as N2O fluxes were not different significantly for both opaque-transparent chamber measurements. Current magnitude provides the pattern of the urban ecosystem source/ sinks potential during ambient light conditions.

Publisher

EDP Sciences

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3