Air trapping problem during infiltration on the large areas

Author:

Tisler Witold,Szymkiewicz Adam

Abstract

The process of flow modeling in unsaturated porous medium is often found in many fields of sciences: geology, fluid mechanics, thermodynamics, microbiology or chemistry. Problem is relatively complicated due to complexity of the system which contains three phases: water, air and soil skeleton. The flow of water in such a medium can be described using two-phase (2PH) flow formulation, which accounts the inflow of air and water phases, or with simplified model known as Richards (RE) equation where only water flow is taken into account. In many well known programs available in the market (like SeepW, STOMP) the primary interest is only the water flow and the flow of air is omitted. As a result Richard equation in used more often. It’s main assumption is that pore air is continuous and has connection with atmospheric air which is equivalent to infinite mobility of the air phase during all simulation. This paper presents a brief review of the influence of the air phase in soil on water flow and pore pressure generation, with focus on applications related to infiltration process occurring in the large areas. An irrigation effect of rice fields with shallow water table has been investigated. To assess the impact of the gas phase various lengths of the infiltration zone have been considered. Numerical simulations are carried out to investigate the differences between the Richards equation and the two-phase flow model, using an in-house code based on the finite volume method.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3