Stabilization of Ash and Slag from Combustion of Medical Waste in the Geopolymers Matrix

Author:

Mierzwiński Dariusz,Łach Michał,Mikuła Janusz,Goły Marcin

Abstract

This paper regards the possibility of using geopolymer matrix to immobilize heavy metals present in ash and slag from combustion of medical waste. In the related research one used the fly ash from coal combustion in one Polish CHP plant and the waste from two Polish incineration plants. It was studied if the above-named waste materials are useful in the process of alkali-activation. Therefore, two sets of geopolymer mixtures were prepared containing 60 and 50% of ash and slag from the combustion of medical waste. The remaining content was fly ash from coal combustion. The alkali-activation was conducted by means of 14M solution of NaOH and sodium water glass. The samples, whose dimensions were in accordance with the EN 206-1 norm, were subjected to 75°C for 24 h. According to the results, the geopolymer matrix is able to immobilize heavy metals and retain compressive strength resembling that of C8/10 type concrete.

Publisher

EDP Sciences

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Solidification and stabilization of heavy metals in medical waste ash through alkali activation;European Journal of Environmental and Civil Engineering;2024-03-21

2. Evaluation of Hybrid Melamine and Steel Fiber Reinforced Geopolymers Composites;Materials;2020-12-05

3. Strength and leachability of geopolymers with the addition of municipal solid waste ashes;IOP Conference Series: Materials Science and Engineering;2019-11-01

4. Fly ash as a raw material for geopolymerisation-mineralogical composition and morphology;IOP Conference Series: Materials Science and Engineering;2019-11-01

5. Fly ash as a raw material for geopolymerisation - chemical composition and physical properties;IOP Conference Series: Materials Science and Engineering;2019-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3