Evaluation of electricity consumption and carbon footprint of UI GreenMetric participating universities using regression analysis

Author:

Presekal Alfan,Herdiansyah Herdis,Harwahyu Ruki,Suwartha Nyoman,Fitri Sari Riri

Abstract

UI GreenMetric as sustainability-based university rankings has received a worldwide acceptance since its initiation in 2010. One of the criteria for this ranking is the annual electricity consumption of participating Universities. There are some challenges in evaluating the overall data, i.e. some electricity consumption information is missing or may not accurately represent the real condition. There is various information that can be used to calculate the university rank associated with electricity consumption. On the other hand, some external data sources from World Bank on the annual electricity consumption per capita for every country is highly correlated with the electricity consumption in every University. This paper aims to show our evaluation and prediction of the annual electricity consumption from participating university using regression analysis based on the available data of UI GreenMetric and relevant external information. This is conducted using regression analysis on the data submitted in 2017 and the predicted KWH based on the number of full-time student and staff in the university. The result shows that some universities are consuming more electricity than the average KWH used per-capita in their country. The result also shows that the prediction cannot be used accurately, especially for the carbon footprint. This evaluation may help universities to improve their policy in reducing the electricity consumption and the greenhouse gas emission reduction policy, and mainly helps UI GreenMetric to speed up the verification process when necessary

Publisher

EDP Sciences

Reference10 articles.

1. Braun M. R., Altan H., and Beck S. B. M., Using regression analysis to predict the future energy consumption of a supermarket in the UK, Applied Energy 130: 305-313,

2. Ben Rabha M., Boujmil M.F., Saadoun M., Bessaïs B., Eur. Phys. J. Appl. Phys (2014)

3. Regression analysis for prediction of residential energy consumption

4. Chambers N; Simmons C., Wackernagel M., Sharing Nature’s Interest. Earthscan Publications Ltd. London, UK (2000)

5. Wiedmann Thomas, et al. Multiregional inputoutput modelling opens new opportunities for the estimation of ecological footprints embedded in international trade. International Ecological Footprint Conference, Cardiff (2007)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3