Aggregation process of kaolinite clay

Author:

Morais Letícia,Cordão-Neto Manoel,Tarantino Alessandro

Abstract

Clay geomaterials pose a great challenge in geotechnical design due to their complex mechanical behaviour. Despite the vast research on clay mechanical behaviour, mechanisms occurring at the particle-scale still remain largely unknown. Particle-to-particle interactions include electro-chemical forces, which can be in turn associated with repulsive/attractive Coulomb interaction and attractive van der Waals force. This work aims to investigate the role of attractive forces (van der Waals and Coulomb) via their control of the process of aggregation (attractive forces tend to form aggregates of clay particles). Dry clay particles were compressed under high stress to reduce particles distances and activate attractive van der Waals and Coulomb forces. Particle size distribution was then measured using laser granulometry to explore aggregation formation. Laser granulometry tests were performed with and without ultrasound and with and without dispersant. Results show that the higher the compressive stress applied to the sample, the bigger is the ‘particle’ size measured by the laser granulometry, which corresponds to formation of aggregation due to attractive forces. Ultrasound appeared to disaggregate the aggregates thus suggesting that van der Waals and Coulomb forces are sensitive to dynamic loading.

Publisher

EDP Sciences

Reference17 articles.

1. Verwey E. J. W., Overbeek J.T., Theory of stability of lyophobic colloids, New York: Elsevier, (1948)

2. Physico-Chemical Analysis of the Compressibility of Pure Clays

3. Electromagnetic forces and soil strength

4. Discrete‐Element Method for Simulating Behavior of Cohesive Soil

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3