Widely Employed Constitutive Material Models in Abaqus FEA Software Suite for Simulations of Structures and Their Materials: A Brief Review

Author:

Anas S.M.,Tahzeeb Rafat,Al-Dala’ien Rayeh Nasr,Alam Mehtab,Shariq Mohd

Abstract

The structural response of masonry/concrete structures depends upon the load-carrying mechanism and subsequently deformations produced by loads carried. In masonry/concrete structures, identification of the stress/strain imposing stress conditions and strain hardening/softening makes the structural response more complicated. Elastic damage models or elastic-plastic constitutive laws are inadequate to simulate masonry/concrete response under high strain-rate loadings. Further, irreversible or plastic strain cannot be realized using the elastic damage model. Several constitutive damage models are available in the literature. In this article, a concise explanation of the functioning of different material models in the Abaqus software package has been provided. These models include concrete damage plasticity for concrete and masonry, traction separation constitutive laws for brick-mortar interface, Hashin's criteria for CFRP, Johnson-Cook plasticity for steel, and crushable foam plasticity hardening for metallic foams. Researchers frequently utilize these models for numerical simulations and modeling of infrastructural elements and their respective materials when subjected to various structural loads. Besides, this paper presents a discourse on problem-solving methods and a comparison between explicit and implicit analysis. The research provides valuable input to researchers and practitioners in the field of structural engineering for an in-depth understanding of the functioning of Abaqus' pre-existing material models.

Publisher

EDP Sciences

Reference71 articles.

1. Abaqus CAE, “Damage Plasticity, explicit platform, material library, interactions, constraints, boundary conditions, loads, post-processing”, Help & Learning manual, ABAQUS DS-SIMULIA.

2. Soil mechanics and plastic analysis or limit design

3. A plastic-damage model for concrete

4. Plastic-Damage Model for Cyclic Loading of Concrete Structures

5. A description of micro- and macroscale damage of concrete structures

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3