Dynamic Response of Bowstring-arch Highway Bridge Subjected to Above and Below Deck Close-range Large Explosion

Author:

Akram Shahbaz,Umair Mohammad,Alam Mehtab,Anas S.M.

Abstract

Explosion incidents that are unforeseen can lead to the occurrence of extreme loads, resulting in the generation of remarkably high stress levels within the materials comprising various structures. This can cause significant damage to crucial elements and potentially trigger a disproportionate collapse or even initiate a progressive collapse. Bridge structures, which serve as vital lifelines for cosmopolitan areas and strategic bordering environments, hold immense economic and political significance. The failure of these structures can have severe consequences with far-reaching implications. The use of a steel bowstring-arch bridge is a practical choice for congested crossings and remote border areas where spans are short. However, the current design codes for bridges do not take into account high-strain loadings such as blasts or impacts, nor do they provide recommendations for preventing these occurrences during construction or throughout the lifespan of the bridge. Explosive incidents cause greater damage in terms of material damage and loss compared to earthquakes. There has been limited investigation into how steel-concrete bridges respond to explosions in the past. This study examines the numerical analysis of a bowstring-arch highway girder bridge made of steel and concrete. The bridge is supported at both ends and is subjected to close-range concentric explosions above and below the deck at the center and end of the bridge. To model the bridge and predict its behavior, the authors utilized the Abaqus software suite. For the analysis, a significant quantity of TNT weighing 1.63-tonne has been positioned at the midpoint of the bridge and is defined using the Eulerian-Lagrangian scheme. The transmission of the explosive shockwaves within the bridge material under the given loading circumstances is illustrated and elucidated. The behavior of the bridge is examined in relation to plastic deformations, primary stress, displacement, size of the crater, and overall energy of damage.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3