Development of a specialized software complex for modeling the biogeochemical cycles in the Azov sea, including calculation modules of transformation of phosphorus, nitrogen, silicon, sulfur and dissolved oxygen forms, as well as the dynamics of phyto-and zooplatonkton

Author:

Nikitina Alla,Filinа Alyona,Litvinov Vladimir,Atayan Asya

Abstract

The paper is devoted to the development of a software complex for predictive modeling of biogeochemical cycles in the Azov Sea on high-performance computer systems in a limited time. The complex development includes the creation of software modules of the computational structure to calculate the concentrations of phosphorus, nitrogen, silicon, sulfur, dissolved oxygen forms and describe in detail phyto- and zooplankton dynamics in the Azov Sea; the integration of various environmental databases, satellite monitoring. The complex is adapted to solve a wide class of predictive problems of water ecology and water resources management. It includes the implementation of developed 3D mathematical model of hydrophysics and biological kinetics on computational grids, consistent with the complex shape of the water coastline. Parallel algorithms have been developed for numerical implementation of water ecology problems, oriented to high-performance computer systems. To increase the calculation efficiency of computational grid fragments assigned to graphics accelerators, an algorithm and its software implementation were developed in the CUDA C language. Based on the developed specialized software tools focused on supercomputers, scenarios for the development of the environmental situation and sustainable development management at biological rehabilitation of the Azov Sea were developed, including forecasts of changes in harmful algae concentration; dynamics of spatial interaction processes between phyto- and zooplankton populations; evolution of biological kinetics processes on the example of plankton interaction.

Publisher

EDP Sciences

Subject

General Medicine

Reference21 articles.

1. New Generation Algorithms for Computational Fluid Dynamics

2. Criteria for assessing the ecological situation of territories for identifying of environmental emergency zones and ecological disaster zones. Ministry of Natural Resources of Russia (1992), http://docs.cntd.ru/document/901797511, last accessed 2022/08/15.

3. Guidelines for chemical analysis of marine and fresh waters in environmental monitoring of fishery reservoirs and areas of the World Ocean promising for fishing. VNIRO Publishing House, Moscow (2003). 202 p.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3