Algorithms and programs based on neural networks and local binary patterns approaches for monitoring plankton populations in sea systems

Author:

Sukhinov Alexander,Panasenko Natalia,Simorin Aleksey

Abstract

The work is devoted to the method of multispectral space images analyzing of aquatic coastal systems for identifying phytoplankton populations of complicated structures: determining their boundaries, distributing color gradations and, based on this, determining the distribution of phytoplankton concentrations within patches and the location of the "mass" center. A combination of local binary patterns (LBP) and neuralnetworks methods is considered. Due to these characteristics it is possible, basing on a series of processed images of the same water area for different time points (dates), to determine the changing rate in the spots boundaries and their concentrations, the shift of the mass center which are influenced by the aquatic environment movement and the processes of phytoplankton growth and death. The results of the work allow us to determine the Azov Sea state. Experimental data of the program are given in confirmation part.

Publisher

EDP Sciences

Subject

General Medicine

Reference14 articles.

1. Bondur V.G., Satellite monitoring and mathematical modelling of deep runoff turbulent jets in coastal water areas. Waste Water. Evaluation and Management. Edited by Fernando Sebastián García Einschlag, 155–180 (2011).

2. Cheng W., Hall L., Goldgof D., Soto I., Hu C., Automatic Red Tide Detection from MODIS Satellite Images In Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, pp. 1864–1868. San Antonio (2009).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Forecasting the Coastal Systems State using Mathematical Modelling Based on Satellite Images;Computational Mathematics and Information Technologies;2024-01-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3