Modelling and analysis of a liquid-cooled system for thermal management application of an electronic equipment

Author:

Cheli Lapo,Carcasci Carlo

Abstract

The removal of heat from electronic components, increasingly miniaturized with high power dissipation per unit volume, is a significant industrial problem to be resolved, to avoid failures due to excessive temperatures and besides to maintain performance and operating conditions. This article describes the development of a one-dimensional thermodynamic model to simulate the cooling of electronic chips belonging to inverters for stationary PV solar arrays; these are typically located in very different environments, including deserts or very hot areas, so the operating life of theirs inverter units are strongly affected by changes in external environmental conditions. Results have shown that the model allows, with very low calculation times, to quantify the effects of cooling performance and thermal load of electronics both in design and off-design conditions: the working temperature of the components was monitored as the effectiveness of the main heat exchanger vary with the exposure to the external environment over time, in terms of fouling and as the ambient air temperature changes; in this case a simple control system was simulated to limit the maximum temperature of the chips and the air flow rate of the fans. The thermal performances of two types of glycol-based refrigerant fluids have been compared.

Publisher

EDP Sciences

Reference19 articles.

1. Yeh L.-T. and Chu R.C., Thermal Management of Microelectronic Equipment:Heat Transfer Theory, Analysis Methods and Design Practices (ASME Press, New York, 2002).

2. A critical review of traditional and emerging techniques and fluids for electronics cooling

3. Thermal Management of Electronic Equipment: A Review of Technology and Research Topics

4. Thermal Management of Air- and Liquid-Cooled Multichip Modules

5. Cengel Y.A., Heat Transfer A Pratical Approach, 2nd Edition (2002).

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3