Aerodynamical Performance Decay Due to Fouling and Erosion in Axial Compressor for GT Aeroengines

Author:

De Pratti Giovanni Maria

Abstract

The ingestion of solid abrasive particles and/or foulants causes erosion of the compressor blades, resulting in a considerable reduction in the performance and working life of aviation/heavy duty GT and an increase in fuel consumption. The geometry variation at the Leading Edge (L.E. blunting) and Trailing Edge (T.E. thickness reduction), together with the general increase of airfoil surface roughness, depends on the characteristics of the incident particles, the geometry and the materials of the blade cascade, the dynamic parameters of the particles and on the type of impact. In order to rectify this degradation in performance, it is therefore necessary to re-profile the blades with machining that is highly critical for the performance of the engine, the life of the compressor blades and for maintenance costs. In order to determine an optimum and cost effective process of reprofiling, a series of tests reproducing the corresponding models of flow have been carried out on the Water Table Test Bench using Lamb’s hydraulic analogy relative to profiles of the VII and VIII stage HP of the compressor of the GT CF6-50 (G.E. Co.). The tests were carried out both on the isolated airfoil profile and on the blade cascade and both in the original conditions, at varied geometry (because of erosion and/or fouling) and after re-profiling. The trajectories of the particles have been visualised in several ways (like a false color photographic procedure), confirming results reported by various authors related to the model of impact and erosion. Particularly in the case of the dust aspiration during the arrival phase on the deck of an aircraft carrier. The test results have been discussed and compared with those available in scientific literature.

Publisher

EDP Sciences

Reference23 articles.

1. Predicting Gas Turbine Performance Degradation Due to Compressor Fouling Using Computer Simulation Techniques

2. A.M.C. (1992): RD-305 process, Extract, Compton, Airfoil Managemement Company.

3. Aquaro D. (2004): “Erosion of high temperature resistant materials due to impact of solid particulate: comparison between theoretical and numerical methods”, in Proc. of the AIMETA Int. Tribology Conference, 14-17 September 2004, Rome, pp. 259-268;

4. Armesto C. et al. (eds.) (1993): GE Aircraft Engines CF6-50 Performance Restoration at a Glance, booklet revisione 1, BIC 4484P (3/93), Cincinnati (Ohio)General Electric Co.;

5. Interpretation of Gas Turbine Response Due to Dust Ingestion

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3