Effects of plasma kinetic modeling on performance characterization of plasma actuators for active flow control

Author:

Fontanarosa Donato,Cinieri Giacomo,De Giorgi Maria Grazia,Ficarella Antonio

Abstract

This work focuses on the development of a multiscale computational fluid dynamics (CFD) simulation framework for the investigation of the effects of plasma kinetics on the performance of a microscale dielectric barrier discharge plasma actuator (DBD-PA). To this purpose, DBD-PA multi-scale dual-step modelling approach has been implemented, by considering plasma chemistry and flow dynamic. At first, a microscopic plasma model based on the air plasma kinetics has been defined and plasma reactions have been simulated in zero-dimensional computations in order to evaluate the charge density. At this aim computations have been performed using the toolbox ZDPlasKin, which solves plasma reactions by means of Bolsig+ solver. An alternate current (AC) electrical feeding has been assumed: in particular, the sinusoidal voltage amplitude and the frequency have been fixed at 5 kV and 1 kHz at atmospheric pressure and 300 K temperature in quiescent environment. The predictal charge density has been in a macroscopic plasma-fluid model based on Suzen Dual Potential Model (DPM), which has implemented in the computation fluid dynamic CFD code OpenFoam. Hence, as second step, 2D-CFD simulations of the electro-hydrodynamic body forces induced by the microscale DBDPA have been performed, based on the previously predicted charge densities at the operating conditions. Quiescent flow over a dielectric barrier discharge actuator has been simulated using the plasma-fluid model. The novel modelling framework has been validated with experimental data.

Publisher

EDP Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cold plasma treatment of porous scaffolds: Design principles;Plasma Processes and Polymers;2022-05-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3