An engineering approach for the fast simulation of radial inflow turbines with vaneless spiral casing by single-channel CFD models

Author:

Danieli Piero,Masi Massimo,Lazzaretto Andrea,Carraro Gianluca

Abstract

The basic RANS-CFD analysis of the simplest radial-inflow turbine configuration is the subject of this paper. An original technique is here proposed to model the effect of the vaneless spiral casing using single-channel CFD calculations and providing an effective alternative to the more complex simulation of the 360-degree domain otherwise required to simulate this turbine configuration. The aim of the paper is to verify the effectiveness of the proposed modelling technique as a reliable engineering approach conceived to support the preliminary design phase of radial-inflow turbines with time-effective CFD calculations. To this end, the open-source CFD code MULTALL has been used to predict the aerodynamic performance of optimal designs of radial-inflow turbines with different specific speed and diameter and working with air as ideal gas. The MULTALL predictions are compared with the corresponding steady-state results obtained by calculations suited to the preliminary assessment of radial turbines designs performed on fully 360-degree turbine domains using the commercial code Star CCM+®. The investigation is conducted on two turbines that are designed in accordance with a widely validated method. The results show that the proposed CFD approach predicts well the trends and values of the aerodynamic performance of both the turbine designs: a 5% overestimation of the performance predicted by the fully 360-degree CFD models was never exceeded. The suggested turbine modelling approach implemented in MULTALL requires a three times lower computation time than the corresponding traditional 360-degree model.

Publisher

EDP Sciences

Reference24 articles.

1. A Comparison of the Flow Structures and Losses Within Vaned and Vaneless Stators for Radial Turbines

2. Hellström F., Fuchs L. (2008). “Numerical computations of pulsatile flow in a turbo-charger”. AIAA-2008-073, 46th AIAA paper.

3. Odabaee M., Shenechi M., Hooman K. December 2014. CFD Simulation and FE Analysis of a High Pressure Ratio Radial Inflow Turbine. 19th Australasian Fluid Mechanics Conference Melbourne, Australia 8–11.

4. ANSYS, Inc. (2016) ANSYS Fluent User's Guide, Release 17.2.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3