Prognostic techniques for aeroengine health assessment and Remaining Useful Life estimation

Author:

Caricato A.,Ficarella A.,Chiodo L. Spada

Abstract

Predictive maintenance is the latest frontier in the management and maintenance of many industrial assets, including aeroengines. Made possible by last decades advances in monitoring equipment and machine learning algorithms, it permits individual-based maintenance schedules, on the basis of performance monitoring and estimates resulting from the application of diagnostic and prognostic techniques, whether on ground or real time. Predictive maintenance results in operational cost reduction and asset usage optimization, if compared with traditional maintenance strategies, which instead may suffer from unanticipated failure or unnecessary maintenance and therefore higher operational costs. In the study, Remaining Useful Life (RUL) estimates will be carried out for different turbofan engines, based on historical individual and fleet data made available by the Prognostics Center of Excellence at NASA. The design of Prognostics and Health Management (PHM) algorithms requires at first an analysis of available data to identify which of them is effectively related to equipment degradation and hence could be useful in determining future system evolution and predicting failure. In particular, RUL prediction of test engines suffering from high pressure compressor fault with exponential degradation trend has been carried out with both regression and Artificial Neural Networks (ANNs). In turn, different regression models and neural network architectures have been compared, namely tree regression with different levels of tree depth, Gaussian Process Regression (GPR) with different kernel functions and Multilayer Perceptron (MLP) with one to three hidden layers and varying number of nodes. The objective is to demonstrate the capability of such machine learning algorithms to predict engine failure and thus their importance in supporting predictive maintenance planning, and to evaluate the quality of results in relation to the algorithm structure. Results show comparable performance in terms of Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) of predicted with respect to actual RUL, in particular predictions obtained through recourse to multilayer perceptron reveal to be the most accurate, with a RMSE of 17.38 and a MAE of 12.50.

Publisher

EDP Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3