Field test of active night cooling supplied by district cooling in three commercial buildings

Author:

Jangsten Maria,Lindholm Torbjörn,Dalenbäck Jan-Olof

Abstract

Several previous studies have investigated active night cooling strategies to reduce the peak cooling load in buildings, primarily by precooling the building by the ventilation air during the night. In this study, active night cooling is supplied by the use of district cooling, mainly for cooling buildings by hydronic cooling systems, such as chilled beam or fan coil systems, but potentially also to cool the ventilation air if the outdoor air temperature is above the supply air temperature setpoint. A field test with active night cooling by district cooling was conducted during the summer of 2020 in three commercial buildings located in Gothenburg, Sweden. The active night cooling strategy was implemented by changing the time schedule operation of the buildings’ chilled beam systems to twenty-four hours per day for the first half of the summer and changing back to regular time schedules for the second half. The results showed that active night cooling failed to reduce the hourly maximum cooling power. However, the peak cooling load, corresponding to the 100 hours with the highest cooling power, was reduced with 6.5% for one of the buildings. Active night cooling also reduced the daytime energy usage between 0.7 and 4.6%. The field test demonstrated that some buildings and associated cooling systems are more compatible for active night cooling than others. The test also showed it was possible to achieve some cooling power and energy reductions with simple measures. However, providing active night cooling supplied by district cooling will cause additional costs for the building owners unless it is incentivized by the district cooling provider.

Publisher

EDP Sciences

Reference34 articles.

1. IEA, “The Future of Cooling: Opportunities for energy-efficient air conditioning,” Paris, 2018.

2. Frederiksen S. and Werner S., District Heating and Cooling. Studentlitteratur AB, 2014.

3. Olama A. A., District Cooling: Theory and Practice. Boca Raton, FL: CRC Press, 2017.

4. Thermal energy storage in district heating and cooling systems: A review

5. Optimal chiller loading in a district cooling system with thermal energy storage

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A performance assessment method for district cooling substations based on operational data;Science and Technology for the Built Environment;2022-10-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3