Investigation of coated hydrophobic granular materials by means of computed tomography and environmental scanning electron microscopy

Author:

Toffoli Clara Magalhães,Milatz Marius,Grabe Jürgen

Abstract

Hydrophobic materials in geotechnical engineering and soil science can have natural or artificial origin. They can be applied, e. g., to waterproof structures in the industry. In this contribution, hydrophobic granular material was manufactured through a cold plasma polymer coating procedure. The monomer used was C4F8 (octafluorocyclobutane) and the material to be coated was Hamburg sand, a coarse grained sand. In this context, computed microtomography and environmental scanning electron microscopy were used to investigate the materials in their unsaturated state. The tools are applied to visualize unsaturated phenomena on the microscale. The hydrophobic and untreated materials were imaged by both techniques at different saturation degrees in order to understand the influence of the coating on the sample’s hydraulic behaviour. The chosen environmental scanning electron microscope is able to provide relative humidity in the sample chamber, and so water drops were condensed on the grain surface, allowing to also observe the initial contact of water and the hydrophobic coating. It was observed how the capillary menisci, their geometry and contact properties evolve at different degrees of saturation. The measurements obtained and respective analyses state qualitatively the influence of the hydrophobic coatings on the pore water dynamics at different saturation degrees, which dictates the material’s hydraulic behaviour. Contact angles were also analysed were it was physically possible.

Publisher

EDP Sciences

Reference8 articles.

1. Wettability of porous surfaces

2. Soil water repellency: Origin, assessment and geomorphological consequences

3. Liu D. and Lourenco S. D. N.. 2019. ‘Mechanical behaviour of polymer-coated sands’, Proceedings of the XVII European Conference on Soil Mechanics and Geotechnical Engineering, (Geotechnical Engineering, foundation of the future), 4166–4173. https://doi.org/10.32075/17ECSMGE-2019-0860

4. Wettability of crushed air-dried minerals

5. Soil wettability in ground engineering: fundamentals, methods, and applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3