Acoustic emissions during creep under triaxial compression

Author:

Bock Belinda,Vogt Stefan,Cudmani Roberto

Abstract

Granular materials exhibit time- and rate-dependent behaviour resulting from micromechanical processes at the scale of individual particles. Elastic energy is released during these processes and can be detected as acoustic emissions (AE). Using multistage creep tests under isotropic and anisotropic pressure on medium dense samples of dry silica sand, the relationship between the number of AE events NAE and the axial creep strain Ɛa was determined. In addition, the dependence on the mean pressure p and the deviator stress q was investigated. The experimental results show that the development of AE and axial strain during creep are qualitatively comparable. Within the creep phases both the change in Ɛa and NAE can be described by a logarithmic trend with time. The time-dependent development of both measured quantities exhibit a dependence on q. Moreover, the evolution of NAE with time also shows a pronounced increase with increasing p. A time-dependent power law can be assumed to represent the rates of NAE and the rates of Ɛa with time during creep. The exponent m of the power law is similar for all experiments performed. The initial rates of NAE and Ɛa increase with increasing p as well as increasing q/p-ratio. Finally, a linear correlation between log Ɛa and logNAE was found depending on two state parameters a and b, with a seems to be independent on the stress state.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3