Clay micromechanics: Numerical modelling of electrical double-layer interactions to develop particle-based models for clay

Author:

Casarella Angela,Donna Alice Di,Chassagne Claire,Tarantino Alessandro

Abstract

Discrete element modelling of clays requires defining the interaction energy between two particles. The Derjaguin, Landau, Verwey and Overbeek (DLVO) theory combining the effect of the van der Waals forces and the Coulombic forces due to the double layer of counterions provides a widely accepted framework to characterise the pair potential energy. Solutions of the Poisson-Boltzmann (PB) equation to quantify the Coulombic forces are only available for the case of infinitely extended and uniformly charged facing plates (1D conditions). However, these assumptions are not representative of a clay particle system. Particles should be represented by platelets of finite size and finite thickness, with different charges between the edge and the basal planes. This paper addresses the problem of deriving the Coulombic interaction forces for plates of finite size and thickness in 3D configuration by solving the Poisson-Boltzmann equation numerically via the Finite Element Method (FEM). It is shown that 2D particles (plates of infinitesimal thickness) provide an adequate representation of Coulombic interaction as long as the particles are uniformly charged. The advantage of 2D particles is to reconcile numerical modelling with analytical solutions available in the literature. The use of 2D particles is questionable when considering different charges between basal planes and edges.

Publisher

EDP Sciences

Reference12 articles.

1. Casarella A. “Multi-scale investigation of the thermomechanical behaviour of non-active clay”, PhD Dissertation, Universite Grenoble Alpes, 2022. Available at https://theses.hal.science/tel-04017761v1, accessed 14/04/2023.

2. Thermodynamics of Electrical Double Layers with Electrostatic Correlations

3. Surface force measurements at the basal planes of ordered kaolinite particles

4. The London—van der Waals attraction between spherical particles

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3