High-temperature PEM Fuel Cell Characterization: an Experimental Study Focused on Potential Degradation due to the Polarization Curve

Author:

Baudy Mathieu,Jaafar Amine,Turpin Christophe,Abbou Sofyane,Rigal Sylvain

Abstract

High-Temperature Proton Exchange Membrane Fuel Cell constant current ageing tests highlighted that the characterizations used to monitor the state of health of single cells could be potentially degrading. An experimental campaign to analyze potential degradation due to polarization curves was carried out. More exactly, four methodologies to generate a polarization curve including Electrochemical Impedance Spectroscopies (EIS) were cycled 30 times. The tested single cells were based on a commercial PBI Membrane Electrodes Assembly (MEA) with an active surface of 45 cm2 (BASF Celtec®-P 1100 type). Before the first cycling test and after the last cycling one, complete characterizations, composed by a voltammetry and a polarization curve including EIS, were performed. The results show that one of the MEA has a voltage which increased for one of the four methods to obtain the polarization curve. This growth is linked to a decrease of ohmic losses: in an unexpected way, it could be considered as a way to improve the break-in period. Similarly, the monitoring of CO2 emission (as corrosion has been suspected to be involved at high voltage, i.e. low current density) confirms the potential degradation of the electrodes during the measurement of the polarization curve.

Publisher

EDP Sciences

Subject

General Medicine

Reference21 articles.

1. The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018

2. The global scale, distribution and growth of aviation: Implications for climate change

3. Airbus, Global Market Forecast (2019–2038), airbus.com (2019)

4. Boeing, Commercial Market Outlook (2021–2040), boeing.com (2021)

5. McKinsey & Company, Hydrogen-powered aviation, fch.europa.eu (2020)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3