A Comparative Study of AutoML Approaches for Short-Term Electric Load Forecasting

Author:

Meng Zhaorui,Xie Xiaozhu,Xie Yanqi,Sun Jinhua

Abstract

Deep learning is increasingly used in short-term load forecasting. However, deep learning models are difficult to train, and adjusting training hyper-parameters takes time and effort. Automated machine learning (AutoML) can reduce human participation in machine learning process and improve the efficiency of modelling while ensuring the accuracy of prediction. In this paper, we compare the usage of three AutoML approaches in short-term load forecasting. The experiments on a real-world dataset show that the predictive performance of AutoGluon outperforms that of AutoPytorch and Auto-Keras, according to three performance metrics: MAE, RMSE and MAPE. AutoPytorch and Auto-Keras have similar performance and are not easy to compare.

Publisher

EDP Sciences

Subject

General Medicine

Reference12 articles.

1. Mamun A.A., et al. “A Comprehensive Review of the Load Forecasting Techniques Using Single and Hybrid Predictive Models.” IEEE Access PP.99(2020):1–1.

2. Mujeeb S., et al. “Big Data Analytics for Load Forecasting in Smart Grids: A Survey.” International Conference on Cyber Security and Computer Science (ICONCS), 2018 2019.

3. Bae D.J., Kwon B.S., and Song K.B.. “XGBoost- Based Day-Ahead Load Forecasting Algorithm Considering Behind-the-Meter Solar PV Generation.” Energies 15(2021).

4. Shi H., Xu M., and Li R.. “Deep Learning for Household Load Forecasting - A Novel Pooling Deep RNN.” IEEE Transactions on Smart Grid (2017):1-1.

5. Zhang Y., et al. “Short-Term Residential Load Forecasting Based on LSTM Recurrent Neural Network.” IEEE Transactions on Smart Grid (2019).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3