Author:
Wang Chuanping,Feng Xuezhang,Yang Xiaoli,He Sha,Li Yingjie,Zhang Jia
Abstract
The thermal stress of molecular sieve adsorption tower under transient temperature of 40-290°C is the basis for ensuring the safe operation of the adsorption tower. In this paper, based on the transient thermodynamics theory, the finite element model of the full-size adsorption tower is established. The distribution of thermal stress at the key positions of the tower body is analyzed, and the strength of the maximum equivalent stress position is evaluated. The results show that the maximum residual stress is at the corner of the inner wall of the tower opening to take over the import and export, the maximum is 313.34MPa, and the effect force is gradually diffused along the takeover; The thermal stress on the inside and outside of the skirt is greater than the thermal stress on the inside and outside of the head. The corresponding stress linearization results of each assessment path were evaluated and passed. The strength design, life prediction and maintenance of adsorption tower in complex temperature cross-change conditions provide theoretical basis.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献