Research on Life Prediction of Fan Spindle Bearing Based on Gated Recurrent Unit Neural Network

Author:

Ma Jianeng

Abstract

In order to solve the problems of redundancy calculation and inefficiency of traditional machine learning algorithm in dealing with large amount of historical data of fan, a new predictive algorithm based on gated recurrent unit (GRU) is proposed to predict the remaining service life of fan spindle bearing. Firstly, the vibration history data of the main shaft bearing of the fan is analyzed to find out the relationship between the characteristic value and the remaining life, and the characteristic parameters which can reflect the remaining life are selected; Then, GRU is used to build the remaining service life prediction model of spindle bearing, and the main parameters of the model are adjusted to improve the prediction accuracy of the model. Compared with long short term (LSTM) algorithm, GRU is an effective tool to deal with a large number of data sets.

Publisher

EDP Sciences

Reference4 articles.

1. Residual life predictions for ball bearings based on self-organizing map and back propagation neural network methods

2. Liu Yang Junbin, Zhang Qing, et al. SOC prediction of lithium battery based on QPSO BP neural network[J]. Journal of electronic measurement and instruments, 2013 (03): 44-48

3. Experimental research of oil-free support systems to predict the high-speed rotor bearing dynamics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3