Mobility of Polyethylene Glycol-Modified Urethane Acrylate (PMUA) Nanoparticles in Soils

Author:

Tungittiplakorn Warapong,Kongbua Viranart,Tulaphan Anyamanee,Kaewtawee Kannika

Abstract

Engineered nanoparticles (ENPs) have been reported for their potential to enhance in situ soil remediation due to their size and stability in water. These properties allow them to pass through soils with minimal loss in soil flushing or pump-and-treat process. The success of nanoparticle-facilitated soil flushing depends on the mobility of nanoparticles in the soil matrix. However, organic carbon content and soil texture can affect the mobility of nanoparticles in soils. This study compared the mobility of polyethylene glycol-modified urethane acrylate (PMUA) nanoparticles in three types of soils with varying organic contents. The results of two consecutive injection experiments showed that the recovery of injected nanoparticles through a soil column were 91 and 97% for sandy soil with carbon content of 0.01%, 81 and 85% for clay loam soil with organic carbon content of 1.20% and 67 and 73% for clay soil with organic carbon content of 3.25%. Furthermore, the batch experiments showed that the distribution coefficient (Kd) of PMUA nanoparticles between water and sandy soil, clay loam soil, and clay soil were 1.86, 2.34 and 3.01 mL/g, respectively. This conforms to the column experiment results and confirms that the increase in organic carbon content in soils increases the adsorption of PMUA nanoparticles, and therefore decreases the mobility of the nanoparticles through soils. Moreover, the distribution coefficient from batch experiments could be used to predict the mobility of PMUA nanoparticles in soils, and the viability of in situ PMUA-facilitated soil flushing method for specific contaminated soils.

Publisher

EDP Sciences

Reference19 articles.

1. Rodriguez-Eugenio N., McLaughlin M., Pennock D., Soil Pollution: a Hidden Reality (2018)

2. Edwards D.A., Luthy R.G., Liu Z., Environ Sci Technol. 25 (1991)

3. Sabatini D.A., Knox R.C., Harwell J.H., J Am Chem Soc. 594, (1995)

4. Karthick A., Roy B., Chattopadhyay P., J Environ Manage. 243 (2019)

5. Kim J.-Y., Cohen C., Shuler M.L., Lion L.W., Environ Sci Technol. 34 (2000)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3