Exploring Non-aqueous Solutions for CO2 Capture at Elevated Pressure: An Initial Study for EHA/MOR in DMSO Mixtures

Author:

Kassim Mohd Azlan,Ho Zhongyi,Hussin Farihahusnah,Aroua Mohamed Kheireddine

Abstract

Carbon dioxide (CO2) absorption in a non-aqueous solution is a potential technology for reducing greenhouse gas emissions. In this study, a non-aqueous solvent, dimethylsulfoxide (DMSO), was blended with a amines The non-aqueous blended amines absorbents’ CO2 absorption ability was investigated in a high-pressure absorption reactor with a variable absorption pressure (350–1400 kPa) at constant temperature (303.15K). The results showed that 2M EHA in DMSO solution had the highest CO2 loading capacity (molCO2/molamine) when compared with 1M EHA + 1M MOR in DMSO solutions. It was also found that the absorption capacity increased with increasing pressure. The highest CO2 absorption by 2M EHA in DMSO solution was observed at a pressure of 1400 kPa at 303.15 K with 1.2507 molCO2/molamine. The use of non-aqueous blended amine solvents showed no phase separation phenomenon after the CO2 absorption reaction and the formation of carbamate salt was identified through FTIR analysis. 1 M EHA 1M MOR in DMSO has shown a higher initial absorption rate in comparison to 2 M EHA in DMSO which would suggest that the use of a 1M EHA + 1M MOR in DMSO as a non-aqueous solvent could be a promising solution for CO2 capture.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3