Validation study for Large-Eddy Simulation of Forest Flow

Author:

Pitchurov George,Gromke Christof,Denev Jordan A.,Cesar Cunha Galeazzo Flavio

Abstract

The publication presents Large-Eddy Simulation (LES) of flow over a reduced-scale wind tunnel model of a forest canopy. The final aim of the study is to determine factors responsible for damage in forests by strong winds. The wind tunnel forest was represented by an open-porous foam material for the crown layer and wooden dowels for the trunk layer. The forest model was installed in the open test section of a Goettingen-type wind tunnel and Particle Image Velocimetry (PIV) measurements were made for the acquisition of the flow field data. The numerical simulations were performed with OpenFOAM®. The forest was modelled by an additional sink term in the momentum transport equations based on the leaf area density and a characteristic drag coefficient for the underlying tree specimen. Large-eddy simulations with different subgrid-scale (SGS) turbulence models were carried out and compared to wind tunnel data. The Smagorinsky SGS model outperformed the dynamic Lagrangian SGS model in the windward edge region (within a distance of approximately 2 tree heights from the leading edge) whereas the dynamic Lagrangian SGS model showed a better performance for regions farther downstream.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3