Immobilization of Cellulase on Zinc Oxide Deposited on Zeolite Pellets for Enzymatic Saccharification of Cellulose

Author:

Eom Tokla,Isanapong Jantiya,Kumnorkaew Pisist,Songthanasak Krisanavej,Pornwongthong Peerapong

Abstract

The consumption of fossil fuels to fulfill the global energy demand can cause global warming issues. Renewable energy, i.e., bioethanol, from lignocellulosic biomass, is a promising source of alternative energy to fossil fuels. The conversion of lignocellulosic biomass into bioethanol requires the release of fermentable sugars during the saccharification process using cellulase. However, the utilization of this enzyme on an industrial scale is not feasible due to its difficult separation, instability, and high cost. Here, we present a method for cellulase immobilization on functionalized zinc oxide prepared from either zinc nitrate hexahydrate (ZnO(I)) or zinc acetate dihydrate (ZnO(II)) solutions on zeolite (ZEO) pellets. The immobilized cellulase on ZnO-ZEO structures was characterized by scanning electron microscopy, Xray diffraction spectroscopy, and Fourier transform infrared spectroscopy. The immobilization efficiencies of immobilized cellulase either on ZnO(I)-ZEO or ZnO(II)-ZEO were determined as 58.17 ± 0.75% and 55.51 ± 0.81%, respectively. The immobilized cellulase on ZnO-ZEO was capable of catalyzing microcrystalline cellulose breakdown, releasing reducing sugars. The immobilized cellulase on these structures could be recycled up to four repetitive runs. Based on kinetic data, both the Michaelis constants (Km) and maximum reaction velocity (Vmax) of the immobilized cellulase on the ZnO-ZEO structures were lower than those of free cellulase. This suggests that immobilized cellulase has a higher affinity toward the substrate, but a lower reaction rate than the free enzyme.

Publisher

EDP Sciences

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3