Water-air regenerative heat exchanger with increased heat exchange efficiency

Author:

Batukhtin Sergey,Batukhtin Andrey,Baranovskaya Marina

Abstract

According to experts’ forecasts, by 2040 the global demand for energy will increase by 37%, and renewable energy sources in the next 20 years will become the fastest growing segment of the world energy, their share in the next decade will grow by about one and a half times. Solar energy is the fastest growing industry among all non-conventional energy sources and is gaining the highest rates of development in comparison with other renewable energy sources. In this article, the authors provide an overview of the technologies that increase the efficiency and productivity of solar panels, only the investigated methods are described that can speed up the process of introducing solar energy instead of traditional. All the methods described can increase the efficiency of systems that are based on the use of the sun as the main source of energy. The authors presented and described the scheme of a solar-air thermal power plant, which will improve energy efficiency through the use of a regenerative air solar collector with increased heat transfer efficiency. Strengthening will be achieved through the use of hemispherical depressions on the surface that receives solar radiation. A schematic diagram is given and the principle of operation of such a solar collector is described in detail. A comparative calculation of the intensification of the solar collector with the use of depressions and without the use as modernization was carried out, on the basis of which a conclusion was made about the efficiency of using this type of solar collector and the economic effect from the application of this method. A description of the method for calculating the solar collector is given, thanks to which this development can be used and implemented in existing heating and hot water supply systems.

Publisher

EDP Sciences

Reference67 articles.

1. Kommersant Magazine 2019; https://www.kommersant.ru/doc/3952751

2. Peretok.ru magazine 2014; https://peretok.ru/articles/freezone/17430/

3. Ageev V.A. Non-traditional and renewable energy sources: textbook. Manual for UNIVERSITIES, (2006)

4. Materials of the Federal Industrial Association of Germany for household, energy and environmental technologies

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3