Study of the influence of magnetized ferromagnetic additives on the processes of cement hydration

Author:

Sakhno Serhiy,Yanova Lyudmyla,Pischikova Olena,Liulchenko Yevhen,Sergiienko Tetiana

Abstract

One of the essential tasks for a sustainable future is to reduce harmful emissions into the atmosphere significantly. Cement production is the world’s largest industrial carbon pollutant, accounting for 8 % of global emissions. More than 2.2 gigatons of carbon dioxide are emitted into the atmosphere every year. Therefore, reducing the energy intensity of products and reducing the number of harmful emissions in cement production is becoming critical. One strategy to reduce cement production emissions is to reduce the most energy-consuming component in cement – clinker. In this case, various activation methods are used for maintaining the same level of cement activity. One of these methods is the impact on the hardening binder with magnetic fields. The paper presented a study of hydration processes of blast-furnace cement activated by a magnetized ferromagnetic additive. The work established that the introduction of pre-magnetized ferromagnetic dust into blast-furnace cement composition has an activating effect on binder hydration. It shows that activation occurs both in the initial and long periods of hardening. The nature of the mutual influence of the components of the hydration system alite-lime-slag in a modified binder was revealed. The investigation determined that the ferromagnetic additive, intensifying the process of slag hardening, increases the proportion of hydrated slag by 1.5-2 times. It was revealed that the formation of the ettringite framework in the modified binder’s gel is completed within one day. It is shown that in the subsequent periods, hydration of aluminates occurs mainly due to the formation of tricalcium aluminate hexahydrate (C3AH6), which excludes destructive processes in the late periods of binder hardening. It has been established that under the action of a ferromagnetic additive, the degree of crystallization of hydro silicates in the modified binder increases.

Publisher

EDP Sciences

Reference21 articles.

1. U.S. Geological Survey: Mineral Commodity Summaries 2020. U.S. Geological Survey (2020)

2. Sustainable low-carbon binders and concretes

3. International Energy Agency: Technology Roadmap. Low -Carbon Transition in the Cement Industry. World Business Council for Sustainable Development (2018)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3