Refining the Galerkin method error estimation for parabolic type problem with a boundary condition

Author:

Mamatov Alisher,Narjigitov Xusanboy,Turdibayev Dilshod,Rakhmanov Jamshidbek

Abstract

The article considers a parabolic-type boundary value problem with a divergent principal part, when the boundary condition contains the time derivative of the required function: { utd/dxiai(x,t,u,u)+a(x,t,u,u)=0,a0ut+ai(x,t,u,u)cos(v,xi)=g(x,t,u,),(x,t)∈St, u(x,0)= u0(x), xΩ Such nonclassical problems with boundary conditions containing the time derivative of the desired function arise in the study of a number of applied problems, for example, when the surface of a body, whose temperature is the same at all its points, is washed off by a well-mixed liquid, or when a homogeneous isotropic body is placed in the inductor of an induction furnace and an electro-magnetic wave falls on its surface. Such problems have been little studied, therefore, the study of problems of parabolic type, when the boundary condition contains the time derivative of the desired function, is relevant. In this paper, the definition of a generalized solution of the considered problem in the space H˜1,1(QT) is given. This problem is solved by the approximate Bubnov-Galerkin method. The coordinate system is chosen from the space H1(Ω). To determine the coefficients of the approximate solution, the parabolic problem is reduced to a system of ordinary differential equations. The aim of the study is to obtain conditions under which the estimate of the error of the approximate solution in the norm H1(Ω) has order O(hk−1) The paper first explores the auxiliary elliptic problem. When the condition of the ellipticity of the problem is satisfied, inequalities are proposed for the difference of the generalized solution of the considered parabolic problem with a divergent principal part, when the boundary condition contains the time derivative of the desired function and the solution of the auxiliary elliptic problem. Using these estimates, as well as under additional conditions for the coefficients and the function included in the problem under consideration, estimates of the error of the approximate solution of the Bubnov-Galerkin method in the norm H1(Ω) of order O(hk−1) for the considered nonclassical parabolic problem with divergent principal part, when the boundary condition contains the time derivative of the desired function.

Publisher

EDP Sciences

Reference21 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3