The potential bio-conversion of Palm Oil Mill Effluent (POME) as Bioethanol by steady-state anaerobic processes

Author:

Anggamulia Muh. Ilham,Syafila Mindriany,Handajani Marisa,Gumilar Andri

Abstract

Biomass is a central issue as new material that can be used as a substrate to produce biofuels, it has become global research to replace liquid fossil fuels with alternative renewable and sustainable fossils. Palm oil mill effluent (POME) is the potential of Agri-industrial waste to be used as alternative energy with anaerobic digestion of high concentration organic wastewater can be used for bioethanol production to replace food as raw material. Bioethanol can be produced in acidogenic steps in the organic degradation process. In this research, bacterial mixed cultures sourced from bovine rumen as biomass and the substrate used was palm oil mill effluent (POME) with a characteristic COD concentration of 25,600 mg/L, The operation of the reactor is set at pH 5; 6; 7 for 72 hours with the type of anaerobic circulating batch reactor (CBR), measurement of bioethanol products and acidogenesis of samples is carried out every 6 hours. The results showed that the reactor with variations in pH conditions 5 gave the highest efficiency of bioethanol formation in the 12 hour running process, result is 102,94 mg/L with a maximum formation rate of 9,98 mg/L/hour.

Publisher

EDP Sciences

Reference25 articles.

1. Tree Crop Estate Statistic of Indonesia, Palm oil Indonesia (2016) Area and Palm Oil Production of Smallholder By Province and Tree Crop Classification 9 – 18.

2. Production of biogas and performance evaluation of existing treatment processes in palm oil mill effluent (POME)

3. Schuchardt F., Wulfert K., Darnoko D., & Herawan T. (2007). Effect of new palm oil mill processes on the EFB and POME utilisation. Proceedings of Chemistry and Technology Conference PIPOC 2007, (pp. 44-57). Kuala Lumpur.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Biofuels production;Palm Trees and Fruits Residues;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3