Investigating Three-Dimensional RCC Frames under Seismic Loading with Various Soil Conditions

Author:

Raman Ravi Shankar,Rajitha Akula,Aravinda K,Deshmukh Amol,Kalra Ravi,Maan Preeti,AL-Attabi Kassem

Abstract

Equivalent lateral forces are used in earthquake engineering to build structures that can survive seismic shocks. Considering seismic waves affect how the Earth moves, buildings in India’s seismically active areas must be built to withstand earthquakes. This study examines how multistorey reinforced concrete building frames function seismically while taking into account different soil types, loading scenarios, and seismic Zones IV. For a twelve-storey skyscraper, the analysis includes earthquake reaction storey displacement. This study looks into how soil changes in seismic zone IV affect buildings’ responses, as well as how seismic zones themselves affect them. The building’s natural time periods were evaluated using both response spectrum analysis and time history analysis methods. These results provide insightful information about the complex interaction between soil type and seismic zone, Member stresses and maximum displacement are calculated using static and dynamic analysis. In India’s seismically active region, the necessity for earthquake-resistant structures is highlighted by seismic waves that alter the motion of the earth. Response spectrum analysis combines modal responses via techniques including SRSS, CQC, and ABS, taking into account a variety of response modes. This study compares earthquake loads using various soil types in Zone IV to evaluate building performance during earthquakes. This project’s primary goal is to analyse a multistorey building’s seismic response. Staad Pro Software does load calculations in order to analyse the entire structure. Staad-Pro analysis employs the Limit State create approach, which complies with the Indian Standard Code of Practice.

Publisher

EDP Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Delving into the Realm of Information-Theoretic Security Emerging Trends and Future Directions;2024 International Conference on Communication, Computer Sciences and Engineering (IC3SE);2024-05-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3