Improving Thermo-Hydraulic Performance with Varying Concentrations of Alumina Nanofluids: A Numerical Investigation

Author:

V Revathi,Rajitha Akula,Habelalmateen Mohammed I.,Maske Nikhil,Yadav Dinesh Kumar,Sharma Shekhar

Abstract

In the current study, the investigation of heat transfer and fluid flow Characteristics of Pure water when pass through a double tube heat exchanger (DTHX). This investigation has been conducted across various Reynolds Number to gain insights into their performance also conducted a computational fluid dynamics (CFD) simulation using the ANSYS-FLUENT 22 R1 software. The study employed mathematical models and thermophysical properties of nanofluids and water, which were sourced from existing literature. The analysis focused on comparing pure water, 1% Al2O3/H2O nanofluids. The investigation considered various operating variable as Reynolds Number and temperature across the inner, and outer tubes. Specifically, the Reynolds Number of a range of 2500 to 5500 at 80°C, and 2500 at 15°C for the respective tubes. Key findings are that friction factor for pure water, 1% alumina nf, 2% alumina nf, and 3% alumina nf is increased by 4.61%,11.42%,15.06% and 16.21% as compared to Gnielinski correlation in existing literature at a Reynolds Number of 2500 and this increase in friction factor is 5.66%, 13.79%, 18.03% and 19.61% respectively at Reynolds number of 5500. Nusselt number (Nu) for pure water, 1% alumina nf, 2% alumina nf, and 3% alumina nf is increased by 24.92%, 50.04%, 59.90% and 64.31% as compared to Gnielinski correlation in existing literature at a Reynolds Number of 2500 and this increase is 10.84%, 28.68%, 35.31% and 41.55% respectively at Reynolds number of 5500. The heat transfer coefficients (hi) for pure water, 1% alumina nf, 2% alumina nf, and 3% alumina nf is increased by 3.17%, 7.29%, 8.49% and 8.94% as compared to Gnielinski correlation in existing literature at a Reynolds Number of 2500 and this increase is 8.04%, 18.49%, 21.54% and 22.64% respectively at Reynolds number of 5500.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3