Microwave-Assisted Cladding of Ni-BaTiO3 Mixture onto SS-304 for Enhancing the Wear Resistance and Surface Hardness

Author:

A Kakoli Rao,Parashar Ashish Kumar,Ginni Nijhawan,Banoth Ramesh,Balan Gunapriya,Hameed Ali Abdulhussein

Abstract

The present study focuses on achieving precise deposition of a Ni and 15% BaTiO3 particle mixture onto SS-304 substrates through meticulous preparation steps. Thorough cleaning of the SS-304 substrate eliminated contaminants, ensuring optimal adhesion. Simultaneously, the Ni-BaTiO3 mixture underwent preheating at 1200°C for 20 hours in a muffle furnace to eliminate moisture content, crucial for preventing coating defects. A uniform and crack-free cladding layer enhances the substrate’s resistance to wear, corrosion, and mechanical stresses, thereby extending its service life and improving overall functionality. The surface hardness of SS-304 experienced a substantial improvement of 39.90% following the cladding process with Ni and 15% BaTiO3. A sliding speed of 2 m/s was meticulously selected to replicate typical velocities encountered in practical applications, ensuring a realistic assessment of frictional behavior and wear resistance. Similarly, the sliding distance of 1000 m and an axial load of 5 N were precisely calibrated to simulate the mechanical stresses experienced during sliding contact, facilitating a thorough examination under relevant conditions. These carefully chosen parameters enabled the determination of key tribological properties essential for evaluating the performance of the cladded surface of SS 304 with Ni + 15% BaTiO3. The wear rate, measured at 0.0016 mm3/m, serves as a critical indicator, revealing the volume of material lost per unit distance of sliding. This parameter provides invaluable insights into the surface’s wear resistance and durability, crucial for assessing the longevity and performance of the cladded surface under abrasive conditions. Additionally, the coefficient of friction, determined to be 0.255, offers a quantitative measure of the surface’s frictional behavior during sliding contact.

Publisher

EDP Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Autonomous Multi-Sensor Fusion Techniques for Environmental Perception in Self-Driving Vehicles;2024 International Conference on Communication, Computer Sciences and Engineering (IC3SE);2024-05-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3