Detecting cyberbullying in social media using text analysis and ensemble techniques

Author:

Jeevan Nagendra Kumar Y.,Reddy Vanapatla Rohith,Krishna Pinamoni Vamshi,Kandukuri Jaswanth,Almusawi Muntather,K Aravinda,Kansal Lavish,Kalra Ravi

Abstract

In the dynamic landscape of our hyper-connected digital world, social media platforms play a dual role as facilitators of global interaction and breeding grounds for harmful behaviors. Cyberbullying, an insidious online menace, inflicts emotional distress and psychological trauma on numerous individuals, underscoring the urgent need for advanced tools to detect and prevent such malevolent actions. This innovative project harnesses the power of artificial intelligence and text analysis to illuminate the dark corners of social media where cyberbullying thrives, offering hope to countless victims. At its core, this endeavor utilizes cutting-edge ensemble techniques, a fusion of diverse machine learning algorithms, to analyze textual content across social media platforms. This approach ensures unparalleled accuracy in identifying and flagging cyberbullying instances, enhancing the efficiency of the detection process while minimizing false positives. The project adopts a multifaceted approach to text analysis, examining explicit language, sentiments, context, and behavioral patterns in online interactions. By delving into the intricacies of human communication, the system distinguishes between genuine expressions and malicious intent, providing a nuanced and accurate assessment.

Publisher

EDP Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improving Tree-Based Machine Learning (ML) Classifier Techniques for Web Mining: An Empirical Evaluation;2024 International Conference on Communication, Computer Sciences and Engineering (IC3SE);2024-05-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3