Nanofertilizers: Transforming Agriculture for Sustainable Food Production

Author:

Alekhya V.,Rajalakshmi B.,Kochar Sonika,Khan Irfan,Paul Surovi,Alsalami Zaid,Arun Vanya

Abstract

The world's population is expected to increase to 10 billion humans through the 12 months 2050, which poses an extreme venture to agriculture's potential to deliver the developing demand for meals in a sustainable way at the same time as minimizing unfavourable environmental outcomes. The rising need for food worldwide has led to the widespread usage of fertilisers. The widely used chemical fertilisers can improve crop production and expansion, but they are harmful to the environment, the soil, as well as the health of people. As a result, one of the most intriguing alternatives to conventional fertilisers is nanofertilizer. These synthetic materials consist of nanoparticles that are regulated in their delivery of macro-and micronutrients to the plant rhizosphere. The necessary nutrients as well as minerals are bound together either alone or in conjunction with nano-sized adsorbents in nano material-based fertilizers. Conventional fertilisation techniques have resulted in inefficiencies and environmental problems because they often rely on chemical fertilisers for phosphorus (P) and nitrogen (N). Consequently, nanotechnology-based fertilizers—also referred to as nano fertilisers, or NFs—have become a promising therapeutic option. Compared to conventional fertilisers, these NFs enhance crop yields, improve nitrogen uptake efficiency, and have a smaller negative impact on the environment. This paper explores at the evidence, applications, and benefits of NFs, focusing on how they could change farming practices and enhance the production of sustainably produced food.

Publisher

EDP Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Harnessing The Power of Artificial Intelligence for Disaster Response and Crisis Management;2024 International Conference on Communication, Computer Sciences and Engineering (IC3SE);2024-05-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3