A Novel Deep Learning Approach for Short Term Photovoltaic Power Forecasting Based on GRU-CNN Model

Author:

Sabri Mohammed,El Hassouni Mohammed

Abstract

The integration of photovoltaic power brings the key to clean energy. However, the increasing proportion of photovoltaic (PV) energy in power systems due to the random and intermittent nature of solar energy resources is causing difficulties for system operators to dispatch PV power stations. To reduce the negative influence of the use of PV power, it is great significant to predict PV power accurately. In this paper, we propose a high-precision hybrid neural network model that employs Gated Recurrent Units (GRU) and Convolution Neural Network (CNN) to build a GRU-CNN model to forecast PV system output power. The proposed framework has two major phases. Firstly, the sample data is divided into training set and test set. For this, the temporal characteristics of the data set are extracted using a GRU model and the spatial characteristics are obtained using the CNN model. Secondly, the final predicted PV power is obtained through the output layer. The forecasting accuracy of GRU-CNN is determined by the mean absolute error (MAE), mean square error (MSE), determination coefficient (R2) and root mean square error (RMSE) values. The findings of the comparison experiments show that the GRU-CNN model has better accuracy than some deep learning methods, including, GRU, CNN and long-short term memory model (LSTM).

Publisher

EDP Sciences

Subject

General Medicine

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Prediction of Solar Panel Maintenance using BiLSTM;2024 3rd International Conference on Applied Artificial Intelligence and Computing (ICAAIC);2024-06-05

2. Deep Learning Models in Photovoltaic Power Forecasting: A Review;2024 1st International Conference on Smart Energy Systems and Artificial Intelligence (SESAI);2024-06-03

3. Intelligent clustering-based interval forecasting method for photovoltaic power generation using CNN–LSTM neural network;AIP Advances;2024-06-01

4. Short-term solar photovoltaic power forecasting using ensemble forecasting strategy for renewable resources based power systems;Engineering Research Express;2024-06-01

5. Optimized forecasting of photovoltaic power generation using hybrid deep learning model based on GRU and SVM;Electrical Engineering;2024-05-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3