Supervised Classification Of induction Motors faults

Author:

El bouisfi Radouane,El Menzhi Lamiaa,Chiementin Xavier

Abstract

Currently, the environmental challenges have been considered as a strategic issue for most industrial companies around the world, threatening their sustainability and profit; This leads to taking the environmental dimensions seriously and preserving natural resources well, since they are a key criterion for sustainable development. In this context, this work calls for innovative solution and new technologies to support the development and integration of environmental considerations through the implementation of an automated fault detection and diagnosis system in induction machines in order to minimize downtime, increase machine utilization rate, get an idea of remaining machine life based on artificial intelligence (AI) and the analysis of collected data. Using the Pattern Recognition methods, this system aims to support decision making in terms of defect classification, through the following process: the collection of relevant data about the stator currents of two induction machines, powered by a converter, one healthy and the other defective, through the CompactRIO device, then the analysis of the data, using programs developed under LabVIEW software, and the extraction of the indicators to form a database. Based on analysis results, several intelligent methods by classification algorithms can organize the acquired data in order to automate the diagnostic process. Ultimately, the set-up of an alert system to prevent rather than cure. The outcomes showed that the integration of predictive maintenance could help achieve an energy cost recovery equal to10% of the total costs of an electric motor system. Hence, the premature detection of faults helps to minimize energy expenditure and achieve overall cost savings, which implies energy optimization.

Publisher

EDP Sciences

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3